Nuprl Lemma : send-minimal-realizable 11,40

T:Type, t:Tl:IdLnk, ds1ds2:x:Id fp Type, P:(State(ds1)), Q:(State(ds2)),
d1:(s:State(ds1). Dec(n:. (((P(s,n)))))), d2:(s:State(ds2). Dec(n:. (((Q(s,n)))))),
f:(State(ds1)T).
Normal(ds1)
 Normal(ds2)
 ((destination(l) = source(l Id))
 es.@source(l) state ds1 & (e:E. (kind(e) = rcv(l,"tg")  Knd)  (valtype(eT))
 & @destination(l) state ds2
 & (e:E. (kind(e) = rcv(lnk-inv(l),"tg")  Knd)  (valtype(e))
 & (@source(l) discrete ds1
 & ( @destination(l) discrete ds2
 & ( (k:. @source(l) stable s.(P(s,k))  )
 & ( (k:. @destination(l) stable s.(Q(s,k))  )
 & ( (k:.
 & ( e@source(l).
 & ( ((P((discrete state after e),k)))
 & (  e'@destination(l).((Q((discrete state when e'),k)))
 & (  e'@destination(l). (n:(Q((discrete state after e'),n))))
 & ( (e:E.
 & ( (kind(e) = rcv(lnk-inv(l),"tg")  Knd)
 & (  (k:. (k < val(e))  ((P((discrete state after e),k)))))
 & ( (k:e:E.
 & ( (kind(e) = rcv(l,"tg")  Knd)
 & (  (val(e) = f((state when sender(e)),k T)
 & (  ((Q((discrete state after e),k))))
 & ( e@destination(l).True
 & ( (k:.
 & ( e@destination(l).(n:{0..k}. (Q((discrete state when e),n)))
 & ( e@destination(l). (n:(Q((discrete state after e),n))))) 
latex


Definitionses.P(es), x:AB(x), b, sendMinimalR{$a:ut2, $tg:ut2}(Ttlds1ds2PQd1d2f), lnk-inv(l), kind(e), "$x", rcv(l,tg), x  dom(f), IdDeq, @i(x:T), f(x), x.A(x), discrete(i;x), vartype(i;x), val(e), (state when e), state@i, T, e loc e' , Atom$n, sender(e), source(l), P  Q, P  Q, isrcv(e), A c B, lnk(e), destination(l), lnk_rcv{lnk_rcv_compseq_tag_def:ObjectId}(tgl), let x,y = A in B(x;y), #$n, (discrete state when e), i  j < k, case b of inl(x) => s(x) | inr(y) => t(y), (discrete state after e), State(ds), discrete state@i, , t.1, A  B, s ~ t, loc(e), SQType(T), {T}, {x:AB(x)} , if b then t else f fi , R-Feasible(R), es realizer ind, False, Normal(ds), xdom(f). v=f(x  P(x;v), Dec(P), a:A fp B(a), EqDecider(T), EOrderAxioms(Epred?info), kind(e), type List, Msg(M), val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r  s, , kindcase(ka.f(a); l,t.g(l;t) ), xt(x), x,yt(x;y), IdLnk, constant_function(f;A;B), <ab>, loc(e), A, first(e), suptype(ST), Type, S  T, Top, x:A.B(x), Void, Unit, SWellFounded(R(x;y)), pred!(e;e'), , Id, EState(T), f(a), ES, {i..j}, True, a < b, e@iP(e), e@i.P(e), P  Q, left + right, @i stable state.P(state)  , b, , @i discrete ds, , P & Q, x:A  B(x), P  Q, valtype(e), s = t, Knd, E, @i state ds, x:AB(x), t  T, Consistent(R;es), x:AB(x), f o' g, weak-send-do-apply(es;T;l;tg;a;ds;f), mu'(P), weak-send-do-apply-realizable, es-realizer(p), A  B, [car / cdr], [], weakSendDoApplyR{$a:ut2, $tg:ut2}(Ttldsf), Realizer, discrete-weak-precond-send-p(es;T;A;l;tg;a;ds;P;f), tl(l), l[i], i j, i <z j, hd(l), e c e'
Lemmassend-minimal-lemma, subtype rel self, subtype rel transitivity, select member, weakSendDoApplyR wf, R-sub-Rlist, R-sub-implies, es-real-implies, weak-send-do-apply-realizable, R-consistent wf, unit wf, top wf, first wf, assert wf, not wf, constant function wf, EState wf, kindcase wf, Knd wf, rationals wf, bool wf, qle wf, cless wf, val-axiom wf, nat wf, Msg wf, loc wf, kind wf, IdLnk wf, EOrderAxioms wf, deq wf, Id sq, es-dstate-subtype, es-dstate-after wf, false wf, true wf, es-dstate-when wf, le wf, int seg wf, es-loc wf, existse-at wf, Knd sq, es-kind-rcv, es-isrcv-loc, nat properties, es-sender wf, es-loc-rcv, es-loc-pred, IdLnk sq, es-le-loc, ldst wf, lsrc wf, es-state-subtype2, es-state-when wf, es-val wf, lsrc-inv, ldst-inv, squash wf, alle-at wf, es-vartype wf, es-isconst wf, ifthenelse wf, es-stable wf, fpf-trivial-subtype-top, fpf-ap wf, es-dtype wf, id-deq wf, fpf-dom wf, rcv wf, es-kind wf, lnk-inv wf, es-dstate wf, es-dds wf, es-state-type wf, event system wf, es-valtype wf, subtype rel wf, es-E wf, implies-es-real, sendMinimalR feasible, sendMinimalR wf, Id wf, fpf wf, decl-state wf, bnot wf, decidable wf, normal-ds wf

origin